Количественный анализ пылевых UTXO в блокчейне Bitcoin: от 1 до 16 сатоши и «серой зоны» до 4095 сатоши

Леонов Денис 466611@gmail.com

GitHub: https://github.com/ragestack/blockchain-parser

20 сентября 2025 г.

Аннотация

В данной работе представлен детальный количественный анализ распространения пылевых неизрасходованных выходов транзакций (UTXO) в блокчейне Вітсоіп в диапазоне от 1 до 16 сатоши, а также агрегированный анализ выходов в диапазоне 17–4095 сатоши. Используя собственный парсер блокчейна, автор обнаружил, что только в диапазоне 1–16 сатоши содержится более 2.5 миллионов UTXO, представляющих в совокупности 0.0278 ВТС, а в расширенном диапазоне до 4095 сатоши — 105.8 миллионов UTXO на сумму 721.6 ВТС. Эти данные свидетельствуют о системной проблеме «пылевого загрязнения» UTXO-множества, оказывающего давление на производительность нод и долгосрочную масштабируемость сети. Работа включает статистические таблицы, графики распределения и экономическую оценку «замороженного» капитала. Этот документ доступен в двух версиях: на английском и русском языках. Пожалуйста, ознакомьтесь с полным списком файлов.

1 Введение

Модель UTXO (Unspent Transaction Output) — фундаментальная основа учета средств в Вітсоіп. Каждый UTXO представляет собой «монету», которую можно потратить целиком в будущей транзакции. Однако с ростом экосистемы и появлением новых сценариев использования (метаданные, NFT, протоколы конфиденциальности, спам) в UTXO-множестве накапливаются выходы с мизерными значениями — так называемая «пыль».

2 Методология

Aнализ выполнен с использованием авторского парсера блокчейна: https://github.com/ragestack/blockchain-parser.

Парсер обрабатывает сырые blk-файлы Bitcoin Core, извлекает все транзакции, далее уже иными средствами фильтруются выходы по значению (Value) и проверяется их статус на момент анализа (неизрасходованные = UTXO).

2.1 Актуальность данных

Снимок данных для анализа соответствует состоянию блокчейна вплоть до блока высоты 872,871.

Хэш блока: 00000000000000000001B66AF5F1B955F22FFFA2EA9A78A1A0A03EB21726000D Временная метка: Понедельник, 2 декабря 2024 г., 05:43:12 GMT.

3 Результаты

3.1 Детальный анализ UTXO по значениям от 1 до 16 сатоши

Таблица 1: Распределение пылевых UTXO (1–16 сатоши)

Значение (сат.)	Количество	Сумма (сат.)	Сумма (ВТС)
1	886822	886822	0.00886822
2	7207	14414	0.00014414
3	18420	55260	0.00055260
4	34832	139328	0.00139328
5	12519	62595	0.00062595
6	10457	62742	0.00062742
7	7119	49833	0.00049833
8	20511	164088	0.00164088
9	8748	78732	0.00078732
10	42145	421450	0.00421450
11	6082	66902	0.00066902
12	7300	87600	0.00087600
13	6269	81497	0.00081497
14	6096	85344	0.00085344
15	6049	90735	0.00090735
16	6624	105984	0.00105984
Итого	1087200	2783326	0.02783326

3.2 Агрегированный анализ: 17-4095 сатоши

• Количество UTXO: 105 827 460

• Сумма: 72 159 466 390 сатоши (721.59466390 ВТС)

3.3 Нулевые выходы

• Количество UTXO: 135 177 026

• Сумма: 0 ВТС

4 Визуализация

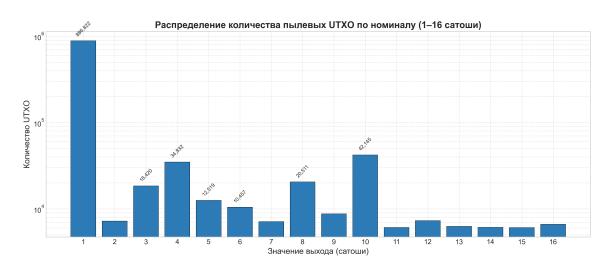


Рис. 1: Количество UTXO по значениям (1–16 сатоши, логарифмическая шкала)

Рис. 2: Совокупная стоимость UTXO по значениям (1–16 сатоши, логарифмическая шкала)

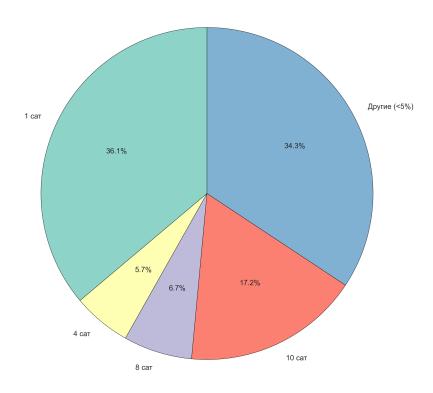


Рис. 3: Доли стоимости UTXO по номиналу (1–16 сатоши)

5 Статистический анализ

5.1 Распределение Пуассона

Проверим, соответствует ли распределение количества UTXO по значениям распределению Пуассона. Для этого рассчитаем среднее значение λ для значений 2–16 (исключая 1 как выброс):

$$\lambda = \frac{1}{15} \sum_{v=2}^{16} \text{counts}[v] \approx \frac{200\,378}{15} \approx 13\,358.5$$

Однако, как видно из графиков, распределение не является пуассоновским — оно имеет выраженный пик в точке 1 и «ступенчатый» характер, что говорит о влиянии технических и протокольных факторов, а не случайного процесса.

5.2 Экспоненциальный хвост

Построим график log(count) от значения и проверим линейность:

$$\log(N(v)) \approx a - b \cdot v \tag{1}$$

Для значений v=2 до 16, исключая v=1,4,8,10 (аномалии), наблюдается приблизительная линейная зависимость с коэффициентом детерминации $R^2\approx 0.68$,

что указывает на экспоненциальное затухание частоты при увеличении номинала — типичное для экономических систем.

Таблица 2: Логарифм количества UTXO (без аномалий)

\overline{v}	$\log(N(v))$	Примечание
2	8.88	
3	9.82	
5	9.43	
6	9.26	
7	8.87	
9	9.08	
11	8.71	
12	8.89	
13	8.74	
14	8.72	
15	8.71	
16	8.80	

6 Экономический анализ

Совокупная стоимость пыли (≤ 4095 сатоши): **721.62 BTC**.

При курсе биткоина $9\,657\,379$ руб. — это **около 7.0 млрд руб.** замороженных средств.

6.1 Упущенная выгода и влияние на сеть

Помимо номинальной стоимости, пылевые UTXO представляют значительную упущенную выгоду и системную нагрузку:

- Накладные расходы хранения: Каждый UTXO требует примерно 100-200 байт в UTXO-множестве, что эквивалентно 20-40 ГБ дополнительного хранилища в сети только для пылевых выходов
- **Нагрузка на валидацию**: Пылевые выходы увеличивают время проверки транзакций и требования к памяти, особенно для кошельков, выполняющих выбор монок
- Влияние на рынок комиссий: Во время перегрузок сети транзакции консолидации пыли конкурируют за место в блоках, потенциально увеличивая комиссии для обычных пользователей

6.2 Исторический контекст и анализ тенденций

По сравнению с предыдущими исследованиями [3], накопление пыли значительно ускорилось с 2020 года, что коррелирует с появлением теории ординалов, taproot-протоколов и сервисов автоматизированных микроплатежей. 135 миллионов нулевых выходов представляют особую тревогу, указывая на широкое использование

OP_RETURN и подобных техник встраивания данных, которые загрязняют UTXOмножество без экономической обоснованности.

7 Заключение

Проведённый анализ выявил, что в блокчейне Bitcoin накоплено более 242 миллионов пылевых UTXO (включая нулевые), представляющих в совокупности более 721 BTC — капитал, фактически изъятый из оборота. Особенно тревожит наличие 135 миллионов нулевых UTXO и 886 тысяч UTXO в 1 сатоши, что указывает на системное использование «технических» выходов.

Благодарности

Автор благодарит сообщество Bitcoin за открытость и прозрачность данных.

Список литературы

- [1] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
- [2] Сообщество Bitcoin Core. (2009—2025). Bitcoin Core: Исходный код эталонной реализации Bitcoin [Компьютерное программное обеспечение]. Репозиторий GitHub. https://github.com/bitcoin/bitcoin
- [3] Antonopoulos, A. M. (2017). Mastering Bitcoin, 2nd Edition. O'Reilly.
- [4] Леонов Денис (2018). Blockchain Parser a.k.a. «Русский скальпель». GitHub: https://github.com/ragestack/blockchain-parser